Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6438 -
Telegram Group & Telegram Channel
Как ускорить вычисления с массивами с помощью NumExpr

NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.

Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.

Вот как NumExpr ускоряет вычисления 🔽

1️⃣ Частичное выполнение в кэше

NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.

Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.

2️⃣ Ускорение с помощью SIMD и VML

Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.

При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.

3️⃣ Поддержка многозадачного масштабирования

NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.

Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:
import numexpr as ne
import numpy as np

# Пример массивов
a = np.random.random(1000000)
b = np.random.random(1000000)

# Обычная операция NumPy
result = np.sin(a) + np.cos(b)

# Эквивалент NumExpr
result_ne = ne.evaluate('sin(a) + cos(b)')


Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6438
Create:
Last Update:

Как ускорить вычисления с массивами с помощью NumExpr

NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.

Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.

Вот как NumExpr ускоряет вычисления 🔽

1️⃣ Частичное выполнение в кэше

NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.

Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.

2️⃣ Ускорение с помощью SIMD и VML

Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.

При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.

3️⃣ Поддержка многозадачного масштабирования

NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.

Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:

import numexpr as ne
import numpy as np

# Пример массивов
a = np.random.random(1000000)
b = np.random.random(1000000)

# Обычная операция NumPy
result = np.sin(a) + np.cos(b)

# Эквивалент NumExpr
result_ne = ne.evaluate('sin(a) + cos(b)')


Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6438

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from kr


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA